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A Quasi-lattice Theory for Compound 
Forming Molten Alloys? 
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Physics Department, University of Alberta Edmonton, Alberta, Canada, T6G 2J1 

(Rweizwl  June 8, IY83) 

The complex formation model of Bhatia and Hargrove (BH) to explain the thermodynamic 
properties of compound forming A-B alloys is reformulated using a quasi-lattice picture. The 
formulation is explicitly carried out to an approximation where the pseudo-ternary alloy (of A 
and B atoms and A,B,. complexes (p, v small integers)), envisaged in BH, is treated in the quasi- 
chemical approximation. It is advantageous over BH in two major respects: Firstly, it gives 
useful insight into the two approximations used in BH, since these follow from it by simply 
going to a lower (zeroth) approximation and setting the coordination number z of the alloy to 
be I = 2 and z = cc. Secondly, unlike the BH approach, it provides also an expression for the 
short rangc order paramctcr IX] for ncarcst ncighbours. The effect of varying z in the formulac 
is examined and a brief discussion ofcc, is given. 

1. INTRODUCTION 

In recent years a number of workers’ ~ have discussed characteristic 
features of concentration fluctuations and other thermodynamic properties 
of compound forming molten alloys using the complex formation model as 
proposed by Bhatia et al.’-’ (for earlier references, see Ref. 7-9). A partial 
aim of this paper is to show that the results given in Ref. 7-9-particularly 
in Ref. 8, hereafter referred to as BH-can be derived as special cases of a more 
general formulation. The latter which we present below is based on the ideas 
underlying Guggenheirn’s’’ quasi-lattice theory of mixtures of polymers. 

The aforementioned reformulation of BH model is desirable for several 
reasons: First, it provides a firmer statistical mechanical foundation for 
some of the approximations made in BH and points ways on how to improve 
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I78 A. R. BHATIA AND R .  N. SINGH 

upon them. For reasons which will become clear in the text the formulation 
is actually carried out to an approximation higher than that necessary for 
relating it to BH work (93,4). Secondly, it makes clear the rolc of the coordina- 
tion number z of the alloy-unlike the BH expressions which do not contain 
z (95). Finally, unlike the earlier treatment, the present formulation yields 
also an expression for the short range order existing in the liquid alloy 
(96)-a topic which has received considerable attention in the last few years 
both experimentally’ ’ and theoretically12. 

2. COMPLEX FORMATION MODEL 

The essential assumption of the complex formation is that a liquid 
binary AB alloy consists of certain numbers of individual A and B atoms and 
of chemical complexes of the type A,B, (p, v, small pairs of integers), all in 
chemical equilibrium with one another. The choice of p, v is usually, though 
not invariably, apparent from the concentration(s) at which the A-B alloy 
forms a stable compound in the solid phase. We shall here assume for 
simplicity that only one type of chemical complexes (one pair of p, v) are 
formed-the present treatment, as of BH (see Ref. 9), is readily generalisable 
to the case where several types of complexes are formed. 

Let the binary alloy contain in all N atoms of which N c  are A atoms and 
N ( l  - c) B atoms. If these exist in the molten alloy as n ,  individual A atoms, 
n2 individual B atoms and n3 complexes A,&, then from the conservation 
of atoms 

Now if G:” denote the chemical potential, per atom, of the species 
i(i = 1,2,3), in its pure state, then the free energy of mixing G ,  of the binary 
A - B  mixture can be written following BH as 

n1 = N c  - pn,, n ,  = N ( l  - c)  - vn3. (2.1 ) 

G,  G - NcG:’’ - N(l - c)G‘,O’ = - n 3 g  + G’ (2.2) 

(2.3) 

(2.4) 

where G is the total Gibbs free energy of the mixture and 

g = pG‘iO’ + vG$’) - G(30) 

G’ = G - (n1GI0) + n,G‘,O) + n,G‘,O). 

The equilibrium value of n3 (and hence of n1 and n2 via (2.1)) at a given tem- 
perature and pressure is given by 

( ~ G M / ~ ) T ,  P, N ,  = 0. (2.5) 
In (2.2), the first term (- n3 g) represents the lowering of the (free) energy 

due to the formation of the chemical complexes. The second term is the free 
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COMPOUND FORMING ALLOYS I79 

energy of mixing of a ternary mixture of fixed nl, n 2 ,  n 3  whose constituents 
A ,  B, and A,B,. are assumed to interact relatively weakly with one another- 
any strong bonding interaction between A and B atoms having been taken 
care of via the formation of the chemical complexes. The problem of deter- 
mining G, and hence other thermodynamic properties thus reduces to 
having an expression for G'. We next consider a quasi-lattice formulation 
for deriving an expression for G', postponing, for convenience, comment on 
the forms for G' used in BH. 

3. QUASI-LATTICE FORMULATION FOR G' 

In quasi-lattice models of liquid m i x t ~ r e s ' ~ , ' ~ ,  all the atoms are assumed to 
be located on a set of equivalent lattice sites, each site having z nearest neigh- 
bours. If the size (volume) of the two types of atoms A and B differ by no more 
than forty or fifty percent, then each atom (of either type) can be taken to 
occupy just one lattice site". Most compound forming alloys fall in this 
category and for simplicity we consider this important case only. The atoms 
of thc complex A , B ,  then occupy p + v lattice sites, and the total number of 
lattice sites is just N ,  the total number of atoms in the alloy: 

N = n ,  + n2 + n 3 ( p  + v) .  

Finally the interaction between the atoms is assumed to be of short range and 
is represented by nearest neighbour bond or contact energies. 

3.1 Configurational energy € 

The first step in obtaining an expression for the partition function and hence 
G' is to determine the form of the configurational energy E .  Each individual A 
or B atom has z nearest neighbour contacts all of which contribute to E. 
Some of the contacts of an atom in a complex however are with other atoms 
of the same complex; these do not contribute to E as their contribution is 
included in the y-term of Eqn. (2.2). Let zq,  denote the number of nearest 
neighbour pairs of sites of which one is occupied by a given complex and the 
other is not. The total number of contacts which contribute to E is then 4 z J "  
where 

N = n1 + n2 + q 3 n 3 .  

We discuss the value of q ,  later. Next, in the sense explained below, we have 
to regard an A atom (or a B atom) belonging to the complex as though it were 
different from the individual A (or B )  atom not belonging to the complex. 
We denote the contact between two individual A atoms as an A A  contact with 
its energy as m A A ,  while if the contact is between an A atom belonging to a 

(3.2) 
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1x0 A. B. BHATIA A N D  R. N.  S I N G H  

complex and an individual A atom we denote it as an A'A contact with its 
energy as ~ o ~ , ~  ( = w A A . ) .  Similarly we denote by A'A' the contact between two 
A atoms belonging to two different complexes with its energy as w ~ , ~ , .  
Finally if the numbers of different types of contacts, AA,  A'A, A B  etc. are 
n A A ,  nASA( = n,,,), YIAB( = nBA) etc., then the configurational energy E equals: 

E = n A A ( i ) A A  + n B B w B B  f !?AB(C)AB + nAA'(C)AA' + nAB'(C)AB, 

+ n B B z w , B 8  + ! t B A ' W B A ,  + n A ' B ' @ A , B ,  + I1A.A'WA.A' + i?-B'B'WB.B'. (3.3) 
We simplify (3.3) as follows: 

straightforward counting from a given atom, one has 
First we note that nAA etc. are not all independent of one another. By 

n A A  + TYzAB 1 + T(nAA '  1 + n A B ' )  = +Zn, ,  (3.4) 

(3.5) n B B  + + n g A  + T ( n B A ,  + n B B , )  = t z n z ,  

(3.6) n n , A ,  + inA,* + p A , B  + Xt7ASBP = ?c,q3zn3, 

(3.7) 

1 

1 1 1 

1 1 nB'B' + Z n B , B  + T f z B . A ,  + ) / l g , A  = $( 1 - c,)q, Z M g ,  

where c, is the compound forming concentration c, = p/(p + v ) .  
Secondly, to make the problem more tractable, we assume that the complexes 
are randomly oriented. In other words, if n13, for example, denote the total 
number of nearest neighbour pairs of sites such that one site is occupied by 
an individual A atom and another by an atom (A '  or B') from the complex, 
then, becausc of assumed random orientations, 

I z A A ,  = c , F z , ~ ;  YZAB. = (1 - ~ , ) n 1 3 .  (3.8) 

IZBA' = ( ' ~ ' ~ 2 3 ,  IIRB' = - cc)n23, (3.9) 

Similarly defining 1 2 ~ ~  and n 3 3  one has 

n A S A .  = ~ , n ~ ~ ~  nWB' = (1 - C , ) 2 / I g 3 ,  IZA'B' = 2~, ( l  - ~ , ) y / 3 3 .  (3.10) 2 

It follows, of course, from the definitions of n I 3  etc., that (irrespective of 
whether (3.8)-(3.10) are true or not) 

M i 3  = HAA,  + ~ A B ' ,  n 2 3  nBA'  + n B B ' ,  
(3.11) 

Making for convenience a change of notation, n A A  = n , , ,  nBB = n,, and 
nAg = n I 2 ,  equations (3.4) and (3.5) and the sum of (3.6) and (3.7) may be 
respectively written as, using (3.1 1)  

1 (3.12) 
I 1 (3.13) n 2 ,  + 7nlz  + ~n~~ = TZ~,, 

n 3 3  + +n13 + i n 2 3  = +q.~zn,, (3.14) 

? I 3 3  = nA'A'  + ?lB,B' + n A ' B ' .  

1 I 

1 
n i l  + ~ n 1 2  + ~ 1 1 1 3  = 7 ~ ~ 1 ,  

which we shall need presently. 
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COMPOUND FORMING ALLOYS 181 

Using now (3.8)- (3.10) the configurational energy (3.3) may be written as 

(3.15) 
3 

E = 1 niiwii +c 1 nijwij ,  
i =  1 i <  j 

where we have set w , ,  = w A A ,  022 = w B B ,  w12 = wAB and 

(3.16) 013 = c ,wAA,  + (1 - c,)wAB,,  023 = c,cc)BA, + (1 - ~ . , ) ~ g g , ,  
(033 = c I f l ) A ' A ,  + (1 - C C ) ~ W B ' B '  + 2cc(1 - c,)WA'B'. 

Finally, on using (3.12)-(3.14) in (3.15), one can write E as 

1 
E = jz[n1(*311 + 1 2 2 0 2 2  -t 4 3 n 3 W 3 3 1  + Cn12x12 + n13X13 + n23X231, 

(3.17) 

which is the form for E we wished to obtain. In (3.17), 2xI2 = 2o12 - m l l  - 
- w ~ ~ ,  with similar definitions for x13  and x23. The three xi;s are the inter- 
change energies with obvious physical interpretation. They alone enter the 
expression for the free energy of mixing G' of the ternary mixture-the re- 
maining terms in (3.17), being linear in the ni,  do not contribute to G'. 

3.2 

Thc configurational partition function Cl is 

The partition function and the expression for G' 

(3.18) 

where g ( E )  is the number of configurations having a given E ,  i.e. for a given 
set of nij .  We treat Q in the well-known quasi-chemical approximation (QCA) 
which is described in detail for binary mixtures of both monomers and poly- 
mers by Guggenheim'O. Since the steps for a ternary mixture are similar, we 
give here only the final result. One has (for a given n l ,  n 2 ,  n3) 

(3.19) 

where 

F([nij]) = n , ,  ! n Z 2  ! n 3 3  !(4n12!)2(4n,3 ! ) 2 ( i n 2 3 ! ) 2 ,  

nij are the solution of the three equations (3.12)-(3.14) and the three chemical 
equilibrium type relations: 

(3.20) 
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I82 A. B. BHATIA AND R. N. SINGH 

which are sufficient to determine all six nij. n$ are similarly determined, 
except that they obey, instead of (3.20), 

(3.21) 

which correspond to as though the different constituents (A,  B, A,B,)  of the 
mixture were distributed at random ( x i j  = 0). Further, E([ i i i j ] )  is the con- 
figurational energy given by (3.17) but with nij  replaced by E i j .  Finally, 
W(n,, n,, n 3 )  in (3.19), represents the number of ways in which n , A  atoms, 
n,B atoms, and n3AuBv complexes can be randomly arranged on N lattice 
sites. 

Since each complex A,B,. occupies (p  + v) lattice sites, Wdepends also on 
the arrangement of atoms inside a complex. The evaluation of Whowever 
for complexes of arbitrary shape, even if it were known, can be difficult and 
we assume here that the atoms in acomplex are arranged in open chains which 
may or may not be branched. Guggenheim" has investigated Wfor a multi- 
component mixture of polymers whose molecules are all of the open chain 
type just described and hence W for our problem becomes just a special case 
of his Eqn. (10.10.2). Noting that for our case rl  = r 2  = 1, q1 = q 2  = 1 and 
r3 = p + v, we have for W 

(+ny)2/n;n; = 1, ( i , J  = 1, 2, 3, i # j ) ,  

(3.22) 

where @,/a,) depends on the internal symmetry of the complex and does not 
enter into the expression for G'. A'" is already given in Eqn. (3.2)-the value 
of q3 for open chained molecules being 

q 3  = p + v - 2(p + v - 1yz. (3.23) 

The configurational free energy F ,  is related to R by F ,  = - k ,  Tln R. The 
free energy of mixing G' differs from F ,  by appropriate linear terms" in ni 
such that G' = 0 when any two of nl,  n 2 ,  n3 equal zero. Making use of (3.22) 
in (3.19) one obtains finally for G' the expression 

where 
G' G: + k , T [ ~ ; ( E i j )  - ~ ( 1 1 3 3  + ( r i 1 2 ~ 1 2  + f i 1 3 ~ 1 3  + n 2 3 ~ 2 3 ) r  (3.24) 

y(nij)  = nlllnnl, + n,,lnn,, + ~ , , l n n , ~  + n121n(3n12) 

+ n 2 3  ln<3 n 2 3 >  + n13 ln<4 n13),  (3.25) 

and G: arises from the W term: 

n 2  

N 
+ n2 In - + n3 In 

1 
2 

- - zq,n3 In ~ 
(3.26) 
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COMPOUND FORMING ALLOYS I83 

and is the free energy of mixing which the mixture would have if its constitu- 
ents were all non-interacting (xij = 0). 

The work of this and the preceding section shows that the complex forma- 
tion model for the compound forming binary alloys can be formulated within 
a quasi-lattice framework. When the expression (3.24) for G‘ is used in the 
expression (2.2) for G,, we shall refer to it, for brevity, as G, in the quasi- 
chemical approximation (QCA) for compound forming alloyst, the last three 
words being understood in the context, We shall not pursue a discussion 
of thermodynamic properties on the basis of QCA, our aim in this paper 
having been to demonstrate that the formulation based on complex formation 
model can be carried out to at least this approximation and to examine how 
it is related to BH work. We shall see later that for quantitative calculations 
of short range order the use of QCA would be necessary. 

4. ZEROTH APPROXIMATION AND RELATION TO BH WORK 

In the so-called zeroth approximationi0 the constituents of a mixture are 
assumed to be distributed at random. In our context this means taking 
f i i j  = n;, despite the bias due to the non-zero interchange energies xij 
implied by (3.20). We can obtain the expression for G’ in the zeroth approxi- 
mation from (3.24) by neglecting in it all terms higher than the first order in 
xij. To this order of approximation one may verify that y(Zij) - y(n$) = 0 
and hence 

By direct counting or using (3.21) in Eqns. (3.1 2)-(3.14) one has 

(4.2) 
n1n2 n1n3  n2n3 nY2 = z ~ nT3 = 24, -, nT3 = zq,  J1/. .N ’ .N 

t The well-known QCA expression for G, for a regular binary alloy is, of course, just the 
expression (3.24) for G’ with n, = 0 (and hence also n , 3  = 1 7 ~ ~  = n33 = 0),  while G, for a 
regular ternary alloy is given by (3.24) with p + v = 1 = q3.  As far as we know the QCA 
expression (3.24) for G’ for the free energy of mixing of a ternary alloy where one of the con- 
stituents (atoms, molecules) has different size has not been given before. 
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184 A. B. BHATIA AND R. N. SINGH 

Substituting (4.2) in (4.1) and introducing for ease of comparison with BH: 

onc obtains 
G' = GL + Jf-' C 1 ninjvij. 

i < j  
(4.4) 

In B H  two approximations were used for G': the Flory's appr~ximat ion '~  
and the conformal ~ o l u t i o n ' ~  approximation. Both can be d e r i ~ e d ' ~ , ' ~  
without reference to a lattice model or the coordination number. However 
they can also be obtained as special cases of (4.4) as follows: First, as is well 
known for binary mixtures' O, the former approximation is equivalent to 
taking the limit z -+ a. Setting z -+ co in (4.4) and remembering (3.26) and the 
definitions (3.2) and (3.23) for N and q 3  respectively, one finds for G' (z + co) 

G' = k,T[n,  ln(n,/N) + n2 In(n,/N) + n3 ln(p + v)n, /N] 

+ N - '  c c ninjuij ,  
i < j  

(4.5) 

which is the expression for G' in Flory's approximation for the case where two 
of the constituents have the same volume V ,  say, and the third has the volume 

The other, namely, the conformal solution approximation for G' used in 
BH, strictly applies to only such liquid mixtures (as opposed to, less condense, 
gaseous mixtures) whose constituents all have comparable volumes. In our 
case this would mean taking p + v = 1 in (4.4) which is physically not the 
case if the complexes are formed. Interestingly enough, however, the con- 
formal solution expression for G' is obtainable from (4.4) for any value of 
p + v if we set z = 2 in it. Putting z = 2 in (3.26) and noting from (3.23) that 
now q3 = 1 and hence A'" = n ,  + n2 + n3 = n, say, Eqn. (4.4) becomes 
(for z = 2) 

(cl + 

which is the standard conformal solution expression for the free energy of 
mixing of a ternary mixture". 

Since neither z -, co nor z = 2 are physically realistic coordination num- 
bers it is of interest to examine how the thermodynamic quantities depend on 
2 .  Below we first give expressions for some of the thermodynamic quantities 
for a compound forming mixture, using for G' (4.4) in the expression (2.2) for 
G,, and then examine the behaviour of one of them on z as an illustration. 
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COMPOUND FORMING ALLOYS 185 

5. EXPRESSIONS FOR THERMODYNAMIC QUANTITIES AND 
DEPENDENCE ON 2 

5.1 

First, it is convenient to rewrite explicitly the expression (2.2) for GM using 
(4.4) and (3.26) in it. One obtains 

Expressions for GM, activity and concentration fluctuations 

n2 

N G ,  = -n3g  f k,T + n2 In - + n, In 

where we have set for later convenience 

y = p + v - q 3  = 2 ( p  + v - l)/z. (5.2) 
Note that in terms of y, <A'" = N - yn,. Applying the equilibrium condition 
(2.5), we obtain 

(5.3) 

I 1 P + "  
In K = - (g/k,T)  + ln(p + v )  - ~ z(p + v - y)ln -----, (5.4) 2 p + v - y  

and 

y11 - p n 3 ) u , 3  + ( n ,  - vM&*3 - (pn2 + \ W 1 ) U 1 2  

For given values of the interaction parameters g and u i j ,  Eqn. (5.3) together 
with (2.1) determines the equilibrium values of n , ,  n,, n3 at a given 7; P and c 
of the binary A-B mixture. We continue for simplicity to denote these 
equilibrium values also by ni, it being understood that in the following all 
ni and their derivatives refer to equilibrium values. 

The algebra for deriving the expressions for the activity etc. is similar to 
that in BH and we omit details. The activity aA of the species A is found to be 

n ,  1 1 1 
lnaA=ln- - -z ln-+-  

N 2 N .Nk,T 
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186 A. B. BHATIA AND R. N.  S I N G H  

The tendency to form complexes is especially transparent in the behaviour 
of the long wavelength limit of the concentration fluctuation structure factor 
Scc(0).’6 Recalling that S,,(O) is given by 

(1 - c )  
d In aR fdc’ 

- - N k ,  T 
(d2G,/&2)T, p ,  

SCC(0) = 

one may obtain for S,,(O), the expression 

where 

(5.7) 

where a prime denotes differentiation with respect to c. The expressions for 
other thermodynamic quantities, the entropy and heat of mixing and the 
volume of mixing, will not be given here for brevity; we may remind though 
that in deriving them g and uij should be considered for consistency as 
functions of temperature and pressure as emphasized in BH7-’ and more 
recently in Alblas et al”. 

We note that for z = 2 and z = co, the various above expressions reducc 
to those given in BH under the labels of the conformal solution and Flory’s 
approximation respectively as, of course, they should. 

5.2 

We consider the limiting case where the tendency to form chemical complexes 
is very strong. This corresponds to having l? 4 1 in the equilibrium equation 
(5.3) and, in practice, it applies if the observed I G,(c,) I > 3 N k ,  7: For I? -+ 0, 
one hast 

Effect of z on Scc(0) for a limiting case 

n3 -, N c / p ,  for 0 < c 5 c,[ = p f ( p  + v)] (5.1 1) 

n3 --f N(1 - c)/v for c, I c < 1. (5.12) 

t We note that the solutions (5.1 1) and (5.12) and hence the corresponding occ expressions 
(5.13) and (5.14) are not valid, very close to c = 0, and c = 1 respectively. Near these end 
limits, eqn. (5.3) requires more detailed consideration. 
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COMPOUND FORMING ALLOYS 1 X7 

When (5.11) holds, n ,  + 0 and also n; -+ 0 and (n;>’/nl + 0. Hence using 
(2.1) and (5.11) in (5.9) one has, for 0 < c I c,, 

(5.13) 

Similarly for the case (5.12), n2 -+ 0, n; + 0 and (n;)2/nz + 0, and hence, for 
c, I c < 1, 

P + (P + V)(P + v - 1)c - Y(P + v - 1) 
4;: = 

PCCP - (11 + v)cI All ~ YC) ‘ 

(5.14) 

Thc explicit expressions for 9 corresponding to (5.13) and (5.14) are readily 
obtained from (5.10) and are omitted here. 

To illustrate the effect of varying z on S,,(O) we consider for simplicity that 
all the interchange energies uij = 0. Then 9 = 0 and S,,(O) = dCc. Figure 
la  depicts the variation of S,,(O) with concentration for three values of 

v + ( p  + v ) (p  + v - 1)(1 - c) y ( p  + v - I )  4;: = - 
v ( l  - c)[v - ( p  + v ) ( l  - c ) ]  v (v  - y ( l  - c))’ 

0 . 3 ;  

0 . 2 4  

SCC(0) 

0 . 1 6  

0.08 

I =  3 

,= 2 

0.2 0.4 0.6 0.6 1.0 
C 

FIGURE la Concentration fluctuations S,,(0) versus concentration for different coordination 
number z, for an alloy with strong tendency to form A,,B,  complexes and i’ij :: 0, and for 
p = 3, v = 2. For reference, the dotted curve shows S,,(O) for an ideal binary alloy. 
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0.4 

0 . 3  

0.2 

SCC ( 0 )  

0.1 

0 . 0  

,. = 3  

I '  
I 7 . = h  

I 
I 

I 
I 

f 

0.2 0.4 0.6 0 . 8  1.0 

C 

FIGURE 1 b Concentration fluctuations S,,(O)versusconcentration for different coordination 
number z ,  for an alloy with strong tendency to form A, ,B,  complexes and I',, = 0 ,  and for 
p = 3. v = 1. For reference, the dotted curve shows S,,(O) for an ideal binary alloy. 

z (= 2,6 and co) for the case ,u = 3, v = 2. Figure 1 b depicts a similar variation 
for the case ,u = 3, v = 1. Curves for intermediate z,  not shown in Figures, 
progressively tend towards the z = co curve as z increases. We observe that 
for a given p, v ,  the curves for different z are all qualitatively similar. An 
important point is that the curve for z = 6 lies much closer to the z = cc 
curve than to the z = 2 curve. Since the coordination number z usually lies 
between six and twelve, one can expect that the Flory's approximation 
( z  + co) would in general agree better with experiment than the conformal 
solution approximation, as was actually found to be the case in the analyses 
of BH. 
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6 .  SHORT RANGE ORDER 

The Cowley-Warren" short range order (SRO) parameter a' for nearest 
neighbours is defined by 

NAB = Nzc( 1 - c)( 1 - a'). (6.1) 

If there is overall preference for unlike atoms to be first neighbours, then a1 
is negative, while for random distribution of A and B atoms a, = 0. As men- 
tioned in the Introduction, a l ,  originally introduced for solids, has been 
measured recently in a number of both regular and compound forming 
liquid alloys' ' and a theoretical interpretation of some of these results has 
been given by Bhatia and Singh". For compound forming alloys these 
authors give a treatment which is likely applicable only to cases where there 
is not too strong a tendency to form chemical complexes. It is therefore not 
without interest to note here that the formulation of the present paper implies 
an expression for NAB and hence for a'. 

In the notation of Sec. 3, N A B  is (a) the sum of all the contacts labelled there 
as AB, A'B, AB' and A'B' plus (b) the number of AB intracomplex contacts. 
The total number of intracomplex contacts are, of course, 

$zN - ~ z N  = fn, yz 

and we assume that a fraction b of these are AB contacts. Then remembering 
Eqns. (3.8)-(3.10), we have for N A B  

NAB = i ~ l z  + (1 - c,)n13 + c,n23 + 2c,(l - c,)n33 + in3yzp. (6.2) 
The actual calculation of (6.2) requires the knowledge of p,  11, and nij .  

As regards f l ,  if the complexes formed are AB(p = v = l), then obviously 
= 1. For other (p, v), in the absence of specific knowledge on the internal 

structure of the complexes, f i  has to be regarded as an adjustable parameter, 
although we can expect b to be close to unity since it is the unlike atom bonds 
which must have lower energy if the A,& complexes are to be formed. 

Next, if the three interchange energies x i j  are all zero (or if we work in the 
zeroth approximation), then nij  = and n, is given by the equilibrium 
Eqn. (5.3). Substituting for n t ,  from (4.2), in (6.2) and using (6.1) one has 

2[(1 - c y p  + C Z V ]  

b +  Nc(1 - - 1)n3i -p  c) + P f V  
ZCll = 

We observe that if there is no tendency to form chemical complexes (n3 = 0) 
then a ,  = 0 according to (6.3). This is to be expected since for this case 
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(n3 = 0 and xl, = O), the A and B atoms in the alloy are distributed at 
random and hence n,,  = nTz = Nzc(1 - c). 

Actually, the experimental evidence on Scc(0) and G, for many alloys 
indicates that in general uij # 0, and, hence also, xij # 0 since z is non-infinite. 
The zeroth approximation expression (6.3) is then not likely to be a sufficiently 
good approximation for since it approximates ni j  = n: and thus ignores 
the bias due to the interchange energies. The nij  therefore have to be evaluated 
at least in the quasi-chemical approximation which involves solving for the 
six ni j ,  the six Eqns. (3.12)-(3.14) and (3.20). When, however, the tendency 
to form chemical complexes is very strong and n3 is given by (5.1 1) or (5.12), 
three of the nij tend to  zero and the problem of solving for the remaining nij 
becomes more tractable. 

We hope to present a fuller discussion of N A B  and ctl and its comparison 
with experiment in a later communication. 
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